您现在的位置:新闻首页>国内新闻

计算机与人类视觉有什么差异?如何提高计算机视觉?

2019-07-19 10:53编辑:admin人气:


据报道,UCSB研究发现计算机与人类视觉具有很大的差异,即使机器视觉方面取得了巨大的进步,仍然无法比得上动物在复杂场景的视觉搜索方面的能力,如何用人眼搜索策略提升计算机视觉至关重要。因此,当目标物体与场景的大小不一致时,看漏了目标并不是人类的缺陷;相反,它是一种有用的策略的副产品,即大脑能够快速减少潜在的干扰物的影响。

在继续阅读之前,请观察下图,找出图中所有的牙刷。

据报道,UCSB研究发现计算机与人类视觉具有很大的差异,即使机器视觉方面取得了巨大的进步,仍然无法比得上动物在复杂场景的视觉搜索方面的能力,如何用人眼搜索策略提升计算机视觉至关重要。因此,当目标物体与场景的大小不一致时,看漏了目标并不是人类的缺陷;相反,它是一种有用的策略的副产品,即大脑能够快速减少潜在的干扰物的影响。

你注意到图中左边那支巨大的牙刷了吗?可能没有。根据加州大学圣巴巴拉分校心理学与脑科学系的科学家们的说法,这是因为当人类在寻找一个特定的物体时,经常容易看漏大小与场景的其余部分不相匹配的物体。

加州大学圣巴巴拉分校的研究人员发现,当人类在寻找一个特定的物体时,经常容易看漏大小与场景的其余部分不相匹配的物体。他们研究这一现象,试图更好地理解人类和计算机在进行视觉搜索时的区别,提出利用人类的视觉搜索策略提高计算机视觉能力。

当人类在寻找一个特定的物体时,经常容易看漏大小与场景的其余部分不相匹配的物体。

科学家们正在研究这一现象,试图更好地理解人类和计算机在进行视觉搜索时的区别。他们的发现发表在最新一期 Current Biology 杂志上。

藏在眼皮底下

当某些东西以不同寻常的大小出现时,你会更经常地看漏,因为你的大脑会自动忽略它,UCSB教授Miguel Eckstein说,他专门研究计算人类视觉(computaTIonal human vision)、视觉注意力和搜索。

该实验使用的是计算机生成的图像中的普通物体的场景,这些图像的颜色、角度和大小不一,并混进目标缺失的场景。研究人员要求60名被试者在这些图像中搜索特定物品(例如:牙刷、停车计时器、鼠标),并使用眼球追踪软件监控他们的视线。

研究人员发现,当物体大小与寻常大小差别很大(太大或太小)时,人们往往会更容易忽略目标,哪怕他们已经直直地盯着目标对象。

相比之下,根据科学家们的报告,计算机视觉不会出现这个问题。但是,在实验中,研究人员发现,最先进的计算机视觉技术深度神经网络也有其自身的局限性。

人类搜索策略可以改进计算机视觉

计算机与人类视觉有什么差异?如何提高计算机视觉?

深度学习算法将红色框里的键盘错误地识别为手机(来源:UC Santa Barbara)

例如,一个CNN深度学习神经网络错误地将计算机键盘识别为手机,它基于形状的相似性,以及物体相对手的位置(手机经常被拿在手中)。但对人类来说,这个物体的大小(相对于人的手)显然与手机是不一致的。

研究人员在论文中指出:这种策略可以让人在快速做决策时减少失误。

Eckstein说:我们的想法是,当你第一次看到一个场景时,你的大脑会在几百毫秒甚至更短的时间里快速处理这个场景的信息,然后你会使用这些信息来引导你寻找物体出现的典型位置。同时,你也会把注意力集中在那些与你所寻找的物体大小一致的物体上。

也就是说,人类的大脑利用物体间的关系来引导他们的眼睛这是一个快速处理场景信息的有用策略,可以消除干扰,减少误报。

根据研究人员的说法,通过利用大脑用来减少误报的一些技巧,这一发现可能对改善计算机视觉有所启发。

未来的研究

Eckstein说:有一些理论认为,患有自闭症谱系障碍的人更关注局部的场景信息,而不是整体的结构。Eckstein正在计划一项后续研究,他说:因此,有一种可能性是,患有自闭症谱系障碍的人可能更不容易看漏那些被错误放大的物体,但在我们进行这项研究之前,尚没法确定这一点。

接下来,研究人员将关注当我们看到错误放大的物体时发生的大脑活动。

博士后研究员Lauren Welbourne说:有许多研究已经确定了大脑中处理场景和物体的区域,现在研究人员正在努力了解这些场景和物体的哪些特定属性被呈现给大脑的这些区域。目前的研究主要集中在物体是如何在大脑皮层上呈现,以及场景背景如何影响物体的感知。

他说:所以我们要做的是找出这些大脑区域对在一个场景中正确或错误地缩放的物体是如何做出反应的。这可能有助于我们确定哪些区域对使我们看漏被错误放大的物体有影响。

(来源:未知)

上一篇:漫步多摩川 追忆旧时的离愁别恨

下一篇:没有了



织梦二维码生成器
已推荐
0
  • 凡本网注明"来源:的所有作品,版权均属于中,转载请必须注明中,http://www.cwbkw.com。违反者本网将追究相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。






图说新闻

更多>>
2013-2017年工业机器人市场深度剖析及预测_1

2013-2017年工业机器人市场深度剖析及预测_1



返回首页